Что такое центральный процессор? Центральный процессор Из чего состоит процессор

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Все электронные компоненты компьютера построены на основе транзисторов . Принцип работы транзистора был открыт тремя учёными в конце 40-х годов, работавшими в компании Bell Labs. Этими учёными были Вильям Шоклей (William Shockley), Джон Бардин (John Bardeen) и Вальтер Брэтнен (Walter Brettain). В 1954 году им была присуждена Нобелевская премия. Важность и значение открытия транзистора для дальнейших разработок в компьютерной отрасли равносильно открытию в своё время колеса и способов добычи огня.

Первый компьютер получивший название ENIAC (elecronic Numeracal Integrator and Computer), был разработан в начале 40-х годов.

Компьютер ENIAC на основе электронных ламп.

В то время не были изобретены транзисторы, поэтому компьютер был изготовлен на основе тысяч громоздких и неудобных вакуумных ламп, а для его размещения потребовалось несколько комнат. Вес достигал 27 тонн. Вакуумные лампы сильно нагревались, были очень ненадёжными и требовали много электроэнергии. Когда ENIAC включали - огни близлежащего города каждый раз тускнели. ENIAC выполнял всего несколько функций. Сегодня эти операции делает любой карманный калькулятор.

С момента изобретения первого транзистора был совершён огромный скачок вперёд в области компьютерной техники. Транзисторы — более простые в изготовлении, дешевле, легче, надёжнее и потребляют гораздо меньше энергии.

Первый транзистор заменял 40 электронных ламп, работал с большей скоростью, был дешевле и надёжнее.

Как можно заставить транзистор работать на нас? Говоря упрощённо, мы используем для этого программное обеспечение, которое и даёт указания компьютеру на включение и выключение транзисторов и в итоге приводит к решению поставленной задачи. В процессе выполнения любых программ происходит генерация последовательности электрических импульсов (цифровых сигналов) в виде наличия двух уровней напряжения. Данная последовательность и определяет работу транзисторов.

Естественно, чем более универсальным является программное обеспечение и чем больше транзисторов используется, тем более сложную и трудоёмкую работу может выполнить компьютер.

В компьютере транзистор работает как переключатель и состоит из трёх основных элементов: коллектора, эмиттера и базы. Предположим, что коллектор транзистора подключён к положительному полюсу 6 — вольтовой батареи, а эмиттер к отрицательному полюсу. Электроны не будут при этом проходить через транзистор (он закрыт). Но если мы подадим небольшое (открывающее) напряжение, на базу, то транзистор откроется и через него на участке коллектор-эмиттер пойдёт ток.

В компьютере используются миллионы транзисторов. Например процессор Intel core i7 содержит около миллиарда транзисторов.

Транзисторы в процессоре, на материнской плате, различных картах расширения и периферийных устройствах реагируют на цифровые сигналы, поступающие от других устройств.

Таким образом современный компьютер представляет собой набор электронных переключателей – транзисторов.

Редакция gg 50 лет закону Мура

Редакция gg вместе со всем прогрессивным миром не устает в нынешнем году праздновать 50-летие закона Мура, который, напомним, гласит: «Количество элементов в микросхемах удваивается каждые два года» (кстати, у нас было несколько роскошных статей на эту тему, которые вы можете найти на сайте в теме « 50 лет закону Мура »). Не устают его праздновать и компании, причастные к личности Гордона Мура. Например, Intel не так давно подвела итог многолетнего претворения в жизнь теории из Закона. Ошеломительные цифры были озвучены, скажу я вам. Ни за что не догадаетесь, насколько круче ваш отсталый смартфон по сравнению с суперпродвинутым компьютером, который сделал возможным первый полет человека на Луну, как часто компаниям приходится полностью модернизировать производство, чтобы ваш ноутбук мог работать дольше, и насколько мы чертовски близки к моменту, когда компьютеры станут умнее нас. Впрочем, зачем гадать, мы все уже написали!

1. По сравнению с первым процессором Intel 4004, выпущенным в 1971 году, современный процессор имеет в 5,6 млн раз больше транзисторов (1,3 трлн) и в 3500 раз более высокую производительность. Энергоэффетивность увеличилась в 90 000 раз. Размеры современных транзисторов измеряются количеством атомов, и один транзистор невозможно увидеть невооруженным глазом.

2. Чтобы наладить производство процессоров по новому техпроцессу каждые два года Intel сталкивается с необходимостью строить новый завод. От старого остается востребованным только здание с подведенными коммуникациями – все оборудование надо обновлять. Это не только дорого само по себе, но требует и того, чтобы выручка от продаж каждого нового поколения устройств с новой технологией покрывала расходы на строительство еще более нового завода.

3. Этот пункт вытекает из предыдущего. С каждым новым поколением процессоров количество их производителей уменьшается, это связано со значительным удорожанием технологий. Более того, компании вынуждены объединяться в разработке во имя прогресса, чтобы хоть как-то уменьшить расходы. На слайде ниже видно, сколько заводов сошло с рельсов с развитием прогресса.

4. Тактовая частота процессоров, которыми оснащается типичный современный автомобильный навигатор, составляет 500 МГц. Для сравнения у космического корабля «Аполлон» в 1966 году был процессор с тактовой частотой 2 МГц. Я просто не верю, что эта штуковина смогла покорить Луну!

5. Современный смартфон, который лежит у вас в кармане, превосходит по мощности компьютер, который установлен в марсоходе Curiosity, запуск которого состоялся 6 апреля 2012 года. Хотя по факту их разделяет приблизительно два поколения техники.

6. 20 лет назад суперкомпьютер Cray-2 обладал такой же мощностью, что и современный смартфон за 300 долларов. А стоил 17 млн долларов.

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

Самым большим различием между процессорами Sandy Bridge и Ivy Bridge является техпроцесс. Причём мы не только получили переход с 32-нм техпроцесса на 22 нм, но и впервые получили новую разновидность транзистора, с трёхмерным затвором. Данная технология позволяет снизить токи утечки и повысить эффективность энергопотребления процессора - в результате мы получаем экономичный процессор не только из-за снижения техпроцесса, но и из-за более эффективных транзисторов.

Core i7-3770K содержит интегрированное графическое ядро HD Graphics 4000 и
1,4 млрд. транзисторов в общей сложности. В случае Sandy Bridge число транзисторов составляло всего 995 млн.
Что касается размера кристалла, то Intel удалось снизить площадь с 216 мм² до 160 мм².

Модели Ivy Bridge обладают примерно на 405 млн. транзисторов больше, чем Sandy Bridge. Но на этот раз Intel не увеличила кэш-память или количество ядер. Да и контроллер памяти был оставлен во многом неизменным, системный агент тоже прежний. Куда же были потрачены 405 млн. транзисторов? По большей части - на интегрированное графическое ядро Intel. Причём Intel не только увеличила размер буферов, но и удвоила количество вычислительных блоков ядра.

Интересно сравнить размер: новый чип Ivy Bridge занимает примерно на 25 процентов меньше на подложке, но содержит существенно больше транзисторов.

Большее количество транзисторов обычно всегда давали большее количество выделяющегося тепла. Но благодаря интеллектуальным технологиям энергосбережения, потребляют энергию только те области процессора, которые активно используются. В режиме бездействия процессор может отключать отдельные ядра, кэш-память или участки интегрированного графического ядра. Добавьте технологии стробирования DDR3 и GT Power Gating. Из-за меньших структур и транзисторов Tri-Gate Intel даже удалось достичь существенной экономии по энергопотреблению. Кроме того, процессоры Intel Ivy Bridge теперь поддерживают память Low Voltage DDR3 (DDR3L), которая может работать от напряжения 1,35 В, что позволяет экономить несколько ватт.

22-нм транзисторы Intel с технологией Tri-Gate

Intel на нескольких ранее проведенных мероприятиях рассказывала о 22-нм техпроцессе. Но на этот раз мы получили кое-какую свежую информацию о 22-нм техпроцессе: принципиально все современные планарные транзисторы создаются по дизайну, разработанному ещё в 1974 году. Конечно, к нему были применены разные доработки и оптимизации, чтобы минимизировать токи утечки и управлять работой транзисторов при снижении техпроцесса - но к 2000 году с этим особых проблем не было, в отличие от токов утечки. Наши читатели могут вспомнить процессоры Northwood, Prescott и многие другие, которым приходилось бороться с проблемами тепловыделения.

В 2003 году Intel начала переход на 90-нм техпроцесс с технологией растянутого кремния (Strained Silicon) для транзисторов NMOS и PMOS с оксидными затворами, что позволило улучшить их характеристики и ток возбуждения (Drive Current). С переходом на 45-нм техпроцесс Intel анонсировала транзисторы с металлическими затворами High-K, то есть с новым диэлектриком (SiO2) и металлическими затворами на основе гафния. Это вновь позволило улучшить работу транзисторов без появления новых проблем с токами утечки.

В случае же объявления 22-нм транзисторов изменилась уже сама структура этих полупроводниковых элементов.

В качестве примера можно привести слайд 22-нм техпроцесса с прошлогоднего форума Intel для разработчиков, где указаны значения токов утечки при разных токах возбуждения (Drive Current) для разных сценариев. Если требуется быстрый процессор, то можно смириться с высоким токами утечки. С другой стороны, можно оптимизировать процессор под меньшие токи утечки. В итоге, в зависимости от сценария использования, можно реализовать в чипе определенные технологии (высокая производительность, стандартная производительность, низкое энергопотребление).

Можно привести следующие основные преимущества 22-нм техпроцесса Tri-Gate:

  • Существует явное преимущество по токам утечки. При меньшем напряжении транзистор переключается быстрее, поэтому его состояние утечки намного ниже (Off State Leakage).
  • При оптимизации под высокое энергопотребление можно получить то же самое состояние утечки (Off State Leakage), что у планарных транзисторов при намного более высокой скорости переключения.
  • В целом, транзисторы Tri-Gate дают на 37% более высокую скорость переключения при напряжении 0,7 В - или, наоборот, снижают на 50% активное энергопотребление Active Power.
  • Если требуется более высокая производительность, то разработчик процессора может внести некоторые простые изменения, чтобы её получить.

Структура транзисторов хорошо видна по рисунку выше: затвор транзистора лучше "огибает" канальную область, предотвращая серьёзные токи утечки.

Intel использовала для процессоров Ivy Bridge 22-нм техпроцесс P1270. Но в 2013 году планируется переход на 14-нм техпроцесс P1272, тоже разработанный Intel. Компания будет производить новые процессоры на пяти заводах, которые будут переведены на 22-нм техпроцесс или уже работают на нем. Помимо заводов в Орегоне, процессоры будут производить ещё две фабрики в Аризоне, а также завод в Израиле.

Intel будет использовать 22-нм техпроцесс как для традиционных процессоров (Core, Xeon, ...), так и для продуктов SoC (Atom и другие). То есть Intel оптимизирует существующие дизайны под новый техпроцесс Tri-Gate. Intel видит преимущество в подобной диспозиции команд по дизайну, что вписывается в инициативу "Unified Design Approach", в результате чего нынешние команды по дизайну (SoC, CPU) быстрее реагируют на вызовы новых областей рынка.