Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel. График функции y=sin x Построить график функции y sin 1

>>Математика: Функции у = sin х, у = cos x, их свойства и графики

Функции у = sin х, у = cos x, их свойства и графики

В этом параграфе мы обсудим некоторые свойства функций у = sin х,у = соs х и построим их графики.

1. Функция у = sin X.

Выше, в § 20, мы сформулировали правило, позволяющее каждому числу t поставить в соответствие число cos t, т.е. охарактеризовали функцию y = sin t. Отметим некоторые ее свойства.

Свойства функции u = sin t.

Область определения - множество К действительных чисел.
Это следует из того, что любому числу 2 соответствует на числовой окружности точка М(1), которая имеет вполне определенную ординату; эта ордината и есть cos t.

u = sin t - нечетная функция.

Это следует из того, что, как было доказано в § 19, для любого t выполняется равенство
Значит, график функции и = sin t, как график любой нечетной функции, симметричен относительно начала координат в прямоугольной системе координат tOи.

Функция u = sin t возрастает на отрезке
Это следует из того, что при движении точки по первой четверти числовой окружности ордината постепенно увеличивается (от 0 до 1 - см. рис. 115), а при движении точки по второй четверти числовой окружности ордината постепенно уменьшается (от 1 до 0 - см. рис. 116).


Функция u = sin t ограничена и снизу, и сверху. Это следует из того, что, как мы видели в § 19, для любого t справедливо неравенство

(этого значения функция достигает в любои точке вида (этого значения функция достигает в любой точке вида
Воспользовавшись полученными свойствами, построим график интересующей нас функции. Но (внимание!) вместо u - sin t будем писать у = sin x (ведь нам привычнее запись у = f(х), а не u = f(t)). Значит, и строить график будем в привычной системе координат хОу (а не tOy).

Составим таблицу значений функции у - sin х:


Замечание.

Приведем одну из версий происхождения термина «синус». По-латыни sinus означает изгиб (тетива лука).

Построенный график в какой-то степени оправдывает эту терминологию.

Линию, служащую графиком функции у = sin х, называют синусоидой. Ту часть синусоиды, которая изображена на рис. 118 или 119, называют волной синусоиды, а ту часть синусоиды, которая изображена на рис. 117, называют полуволной или аркой синусоиды.

2. Функция у = соs х.

Изучение функции у = соs х можно было бы провести примерно по той же схеме, которая была использована выше для функции у = sin х. Но мы выберем путь, быстрее приводящий к цели. Сначала докажем две формулы , важные сами по себе (в этом вы убедитесь в старших классах), но пока имеющие для наших целей лишь вспомогательное значение.

Для любого значения t справедливы равенства


Доказательство . Пусть числу t соответствует точка М числовой n окружности, а числу * + - -точка Р (рис. 124; ради простоты мы взяли точку М в первой четверти). Дуги АМ и ВР равны, соответственно равны и прямоугольные треугольники ОКМ и ОЬР. Значит, О К = ОЬ, МК = РЬ. Из этих равенств и из расположения треугольников ОКМ и ОЬР в системе координат делаем два вывода:

1) ордината точки Р и по модулю и по знаку совпадает с абсциссой точки М; это значит, что

2) абсцисса точки Р по модулю равна ординате точки М, но отличается от нее знаком; это значит, что


Примерно так же проводятся соответствующие рассуждения в тех случаях, когда точка М принадлежит не первой четверти.
Воспользуемся формулой (это - формула, доказанная выше, только вместо переменной t мы используем переменную х). Что дает нам эта формула? Она позволяет утверждать, что функции

тождественны, значит, их графики совпадают.
Построим график функции Для этого перейдем к вспомогательной системе координат с началом в точке (пунктирная прямая проведена на рис. 125). Привяжем функцию у = sin х к новой системе координат - это и будет график функции (рис. 125), т.е. график функции у - соs х. Его, как и график функции у = sin х, называют синусоидой (что вполне естественно).

Свойства функции у = соs х.

у = соs х - четная функция.


Этапы построения отражены на рис. 126:

1) строим график функции у = соs х (точнее, одну полуволну);
2) растянув построенный график от оси х с коэффициентом 0,5, получим одну полуволну требуемого графика;
3) с помощью полученной полуволны строим весь график функции у = 0,5 соs х.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Функция y = sin x

Графиком функции является синусоида.

Полную неповторяющуюся часть синусоиды называют волной синусоиды.

Половину волны синусоиды называют полуволной синусоиды (или аркой).


Свойства функции
y = sin x :

3) Это нечетная функция.

4) Это непрерывная функция.


- с осью абсцисс: (πn; 0),
- с осью ординат: (0; 0).

6) На отрезке [-π/2; π/2] функция возрастает, на отрезке [π/2; 3π/2] – убывает.

7) На промежутках функция принимает положительные значения.
На промежутках [-π + 2πn; 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания функции: [-π/2 + 2πn; π/2 + 2πn].
Промежутки убывания функции: [π/2 + 2πn; 3π/2 + 2πn].

9) Точки минимума функции: -π/2 + 2πn.
Точки максимума функции: π/2 + 2πn


наибольшее значение 1.

Для построения графика функции y = sin x удобно применять следующие масштабы:

На листе в клетку за единицу отрезка примем длину в две клетки.

На оси x отмерим длину π. При этом для удобства 3,14 представим в виде 3 – то есть без дроби. Тогда на листе в клетку π составит 6 клеток (трижды по 2 клетки). А каждая клетка получит свое закономерное имя (от первой до шестой): π/6, π/3, π/2, 2π/3, 5π/6, π. Это значения x .

На оси y отметим 1, включающий две клетки.

Составим таблицу значений функции, применяя наши значения x :

√3
-
2

√3
-
2

Далее составим график. Получится полуволна, наивысшая точка которой (π/2; 1). Это график функции y = sin x на отрезке . Добавим к построенному графику симметричную полуволну (симметричную относительно начала координат, то есть на отрезке -π). Гребень этой полуволны – под осью x с координатами (-1; -1). В результате получится волна. Это график функции y = sin x на отрезке [-π; π].

Можно продолжить волну, построив ее и на отрезке [π; 3π], [π; 5π], [π; 7π] и т.д. На всех этих отрезках график функции будет выглядеть так же, как на отрезке [-π; π]. Получится непрерывная волнистая линия с одинаковыми волнами.

Функция y = cos x .

Графиком функции является синусоида (ее иногда называют косинусоидой).



Свойства функции y = cos x :

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это четная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
- с осью абсцисс: (π/2 + πn; 0),
- с осью ординат: (0;1).

6) На отрезке функция убывает, на отрезке [π; 2π] – возрастает.

7) На промежутках [-π/2 + 2πn; π/2 + 2πn] функция принимает положительные значения.
На промежутках [π/2 + 2πn; 3π/2 + 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания: [-π + 2πn; 2πn].
Промежутки убывания: ;

9) Точки минимума функции: π + 2πn.
Точки максимума функции: 2πn.

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

Функция y = mf (x ).

Возьмем предыдущую функцию y = cos x . Как вы уже знаете, ее графиком является синусоида. Если мы умножим косинус этой функции на определенное число m, то волна растянется от оси x (либо сожмется, в зависимости от величины m).
Эта новая волна и будет графиком функции y = mf(x), где m – любое действительное число.

Таким образом, функция y = mf(x) – это привычная нам функция y = f(x), умноженная на m.

Если m < 1, то синусоида сжимается к оси x на коэффициент m. Если m > 1, то синусоида растягивается от оси x на коэффициент m.

Выполняя растяжение или сжатие, можно сначала построить лишь одну полуволну синусоиды, а затем уже достроить весь график.

Функция y = f (kx ).

Если функция y = mf (x ) приводит к растяжению синусоиды от оси x либо сжатию к оси x , то функция y = f(kx) приводит к растяжению от оси y либо сжатию к оси y .

Причем k – любое действительное число.

При 0 < k < 1 синусоида растягивается от оси y на коэффициент k. Если k > 1, то синусоида сжимается к оси y на коэффициент k.

Составляя график этой функции, можно сначала построить одну полуволну синусоиды, а по ней достроить затем весь график.

Функция y = tg x .

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2.


Свойства функции y = tg x :

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида (ее иногда называют котангенсоидой).



Свойства функции y = ctg x :

ГРАФИКИ ФУНКЦИЙ

Функция синус


— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная .

Функция нечетная: sin(−x)=−sin x для всех х ∈ R .

Функция периодическая

sin(x+2π· k) = sin x, где k ∈ Z для всех х ∈ R .

sin x = 0 при x = π·k , k ∈ Z .

sin x > 0 (положительная) для всех x ∈ (2π·k , π+2π·k ), k ∈ Z .

sin x < 0 (отрицательная) для всех x ∈ (π+2π·k , 2π+2π·k ), k ∈ Z .

Функция косинус


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная .

Функция четная: cos(−x)=cos x для всех х ∈ R .

Функция периодическая с наименьшим положительным периодом 2π :

cos(x+2π· k ) = cos x, где k Z для всех х ∈ R .

cos x = 0 при
cos x > 0 для всех
cos x < 0 для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1 в точках:
Наименьшее значение функции sin x = −1 в точках:

Функция тангенс

Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная .

Функция нечетная: tg(−x)=−tg x
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. tg(x+π· k ) = tg x, k Z для всех х из области определения.

Функция котангенс

Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная .

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. ctg(x+π· k )=ctg x, k Z для всех х из области определения.

Функция арксинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок -π /2 arcsin x π /2, т.е. арксинус — функция ограниченная .

Функция нечетная: arcsin(−x)=−arcsin x для всех х ∈ R .
График функции симметричен относительно начала координат.

На всей области определения.

Функция арккосинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок 0 arccos x π , т.е. арккосинус — функция ограниченная .


Функция является возрастающей на всей области определения.

Функция арктангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арктангенс — функция ограниченная .

Функция нечетная: arctg(−x)=−arctg x для всех х ∈ R .
График функции симметричен относительно начала координат.

Функция является возрастающей на всей области определения.

Функция арккотангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арккотангенс — функция ограниченная .

Функция не является ни четной, ни нечетной.
График функции несимметричен ни относительно начала координат, ни относительно оси Оy.

Функция является убывающей на всей области определения.



|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Синус (sin α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.
Косинус (cos α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x


График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также: